

» Streaming devices that need multi-round interactions

CS598 Al Efficiency

/ LLM for Infinite-length inputs

» Can't generalize to longer texts than the context length

w/ StreamingLLM

(streaming) guangxuan@l29:~/workspace/streaming-1lm$ CUDA_VISIBLE_DEVICE| (streaming) guangxuan@l29:~/workspace/streaming-1lm$ CUDA_VISIBLE_DEVICES=1 p
=0 python examples/run_streaming_llama.py thon examples/run_streaming_llama.py -—enable_streaming

Loading model from lmsys/vicuna-13b-v1.3 ... Loading model from lmsys/vicuna-13b-v1.3 ...

Loading checkpoint shards: 67%| B | 2/3 [00:09<00:04, 4.94s/itl]|Loading checkpoint shards: 67%| | RN | 2/3 [00:09<00:04, 4.89s/it]

CS598 Al Efi E
4

Section NS
Related Work

 Dense Attention: cache the Key and Value states of all previous tokens

« Window Attention: caches the most recent L tokens’ KV

» Sliding Window Attention: rebuilds the KV states from the L recent

(c) Sliding Window
w/ Re-computation

tOkel’lS fOI‘ €a Ch new tOken (a) Dense Attention (b) Window Attention

Current Token

previous tokens i‘
are truncated !

SRRy

<«—— T cached tokens —» “ T-L evicted L cached i <_L re-computed. s,
tokens tokens tokens
O(T?)x PPL: 5641x O(TL)v PPL:5158x O(TL?*x PPL:5.43v
Has poor efficiency and Breaks when initial Has to re-compute cache
performance on long text. tokens are evicted. for each incoming token.

CS598 Al Efficiency I
5

I
Point of Perplexity Surge

« The lower the perplexity, the better the model is at guessing what is next

 Perplexity spikes when the text length surpasses the cache size

| Llama-2-7B ,

‘ i

12 1 8

T 8 3 g ¢

% 6 S o ©

‘_? o 6 >

4 4

2| ARy,
Ook " sk 10K 15K 20K Ok " 5K

Input Length

Dense Attention - \Window Attention

Sliding Window
w/ Re-computation

10K 15K 20K
Input Length

——— StreamingLLM

Section
Attention Sinks

 Initial tokens receive high attention scores.

e Softmax normalizes attention scores to sum to 1.

Layer 0 Head 0 Layer 1 Head 0

Layer 2 Head 0 ayer 9 Hea Layer 16 Head 0
1 ‘ oicy

SoftMax(x); = -

N .
err + Ej=2 e’

r1 >z, €2,...,N

4 6 8 10 12 14

0 2 8 10 12 14 I

Figure 2 Vlsuahzatlon of the average attention loglts in Llama-2 7B over 256 sentences each w1th a length
of 16. Observations include: (1) The attention maps in the first two layers (layers 0 and 1) exhibit the "local"
pattern, with recent tokens receiving more attention. (2) Beyond the bottom two layers, the model heavily attends
to the initial token across all layers and heads.

4 6 8 10 12 14

7 I

secton
StreamingLLM

* Goal: Handle indefinite outputs without fine-tuning models

 Method: attention sinks + rolling KV cache

(b) Window Attention (d) StreamingLLLM (ours)

Generating

Token 7

o

Attention Sink Generating

] & Token 8
—— - : _ B - Generating

T-L evicted L cached .
tokens tokens <+ i;]l(cet:g Lt(c):zl:;d Token 9
O(TL) v PPL: 5158X O(TL)v PPL:5.40v

Breaks when initial

Can perform efficient and stable

okensareevicted. language modeling on long texts.

CS598 Al Efficiency

o[1]|2]|3|4]|5]|6
o[1]|2|3|4i5]|6|7
o[1]|2|3|4i5i6|7]|8

Attention Sinks Evicted Tokens Rolling KV Cache

8 I

secton
StreamingLLM

* Goal: Handle indefinite outputs without fine-tuning models

 Method: attention sinks + rolling KV cache

(b) Window Attention (d) StreamingLLLM (ours)

Generati T .1 -
e l0|1|2]3|4|5]6
/\ - -
Attention Sink G . - ——
_______ = & eflol1|2|3|ais|6|7
- - G- W . —
Pty o Lonhed wevived y . Leached Tokens |0 |1]2]|3]4:5i6]7|8
O(TL) v. PPL: 5158% O(TL) v PPL:540v Attention Sinks Evicted Tokens Rolling KV Cache

Breaks when initial

Can perform efficient and stable
language modeling on long texts.

CS598 Al Efficiency I
9

tokens are evicted.

%

Experiments

How many attention sinks do we need?

CS598 Al Efficiency

Table 2: Effects of reintroduced initial token numbers on
StreamingLLLM. (1) Window attention (0O+y) has a drastic in-
crease in perplexity. (2) Introducing one or two initial tokens
doesn’t fully restore model perplexity, showing that the model
doesn’t solely use the first token as the attention sink. (3) Intro-
ducing four initial tokens generally suffices; further additions
have diminishing returns. Cache config x+y denotes adding x
initial tokens to y recent tokens. Perplexities are evaluated on
400K tokens in the concatenated PG19 test set.

Cache Config 0+2048 1+2047 2+2046 4+2044 8+2040

Falcon-7B 1790 12.12 1212 1212 12.12
MPT-7B 460.29 14.99 15.00 1499 14.98
Pythia-12B 21.62 1195 12.09 12.09 12.02

Cache Config 0+4096 1+4095 2+4094 4+4092 8+4088
Llama-2-7B 335995 11.88 10.51 9.59 9.54

%

How many attention sinks do we need?

CS598 Al Efficiency

Table 2: Effects of reintroduced initial token numbers on
StreamingLLLM. (1) Window attention (0O+y) has a drastic in-
crease in perplexity. (2) Introducing one or two initial tokens
doesn’t fully restore model perplexity, showing that the model
doesn’t solely use the first token as the attention sink. (3) Intro-
ducing four initial tokens generally suffices; further additions
have diminishing returns. Cache config x+y denotes adding x
initial tokens to y recent tokens. Perplexities are evaluated on
400K tokens in the concatenated PG19 test set.

Cache Config 0+2048 1+2047 2+2046|4+2044 8+2040

Falcon-7B 1790 12.12 1212 | 12.12 12.12
MPT-7B 460.29 14.99 15.00 | 1499 14.98
Pythia-12B 21.62 1195 12.09 | 12.09 12.02

Cache Config 0+4096 1+4095 2+4094|4+4092 8+4088
Llama-2-7B 335995 11.88 10.51 | 9.59 9.54

%

Which is more important?

 Position or Semantics

CS598 Al Efficiency

Table 1: Window attention has poor per-
formance on long text. The perplexity
is restored when we reintroduce the initial
four tokens alongside the recent 1020 to-
kens (4+1020). Substituting the original
four initial tokens with linebreak tokens “\n"
(4"\n"+1020) achieves comparable perplexity
restoration. Cache config x+y denotes adding
x initial tokens with y recent tokens. Perplex-
ities are measured on the first book (65K to-
kens) in the PG19 test set.

Llama-2-13B PPL ({)
0 + 1024 (Window) 5158.07
4 + 1020 5.40
4"\n"+1020 5.60

Which is more important?

 Position or Semantics

CS598 Al Efficiency

Table 1: Window attention has poor per-
formance on long text. The perplexity
is restored when we reintroduce the initial
four tokens alongside the recent 1020 to-
kens (4+1020). Substituting the original
four initial tokens with linebreak tokens “\n"
(4"\n"+1020) achieves comparable perplexity
restoration. Cache config x+y denotes adding
x initial tokens with y recent tokens. Perplex-
ities are measured on the first book (65K to-
kens) in the PG19 test set.

Llama-2-13B PPL ()
0 + 1024 (Window) 5158.07
4 + 1020 5.40
4"\n"+1020 5.60

Will attention sinks affect the model training?

2.8
— Vanilla

h ——— <+ Sink Token
32.7
-
()]
o
=
©2.6
=

e oo, s
259 20 40 60 80 100 120 140
k Steps

Figure 6: Pre-training loss
curves of models w/ and w/o sink
tokens. Two models have a simi-
lar convergence trend.

Table 4: Zero-shot accuracy (in %) across 7 NLP benchmarks, including
ARC-[Challenge, Easy], HellaSwag, LAMBADA, OpenbookQA, PIQA,
and Winogrande. The inclusion of a sink token during pre-training doesn’t
harm the model performance.

Methods ARC-c ARC-e HS LBD OBQA PIQA WG

Vanilla 186 452 294 396 160 622 50.1
+Sink Token 19.6 45.6 29.8 399 166 62.6 50.8

15

/]
Will attention sinks affect the model training?

2.8
—— Vanilla
0 —— + Sink Token)))
857 Table 4: Zero-shot accuracy (in %) across 7 NLP benchmarks, including
;’, ARC-[Challenge, Easy], HellaSwag, LAMBADA, OpenbookQA, PIQA,
= and Winogrande. The inclusion of a sink token during pre-training doesn’t
'g 2.6 harm the model performance.

25 ey Methods ARC-c ARC-e HS LBD OBQA PIQA WG
= 0 20 40 60 80 100 120 140

k Steps Vanilla_ 186 452 29.4 39.6 160 622 50.1
Figure 6: Pre-training loss +Sink Token 19.6 45.6 29.8 399 166 62.6 50.8

curves of models w/ and w/o sink
tokens. Two models have a simi-
lar convergence trend.

I
Efficiency

[] Sliding Window with Re-computation [l StreamingLLM

1600 @i - 21 EL 3000 38 3634
) 1 M 1616) 2355 M 2929
£ 1200 G 14 |1313 1313 1414 £ 2250 O 29 (2525 2526 2627
> e
g 800 23 g‘ g 1500 & g‘ 19
L g 7 7] g
< 400 223 (] < 750 361 O 10
— i 931}£}331l|_|35. 45 | |65 S 5 - 5 9948.1,2952.[]60. 75 | 106 = .

256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096
Llama-2-7B Llama-2-13B

Figure 10: Comparison of per-token decoding latency and memory usage between the sliding window approach
with re-computation baseline and StreamingLLLM, plotted against the cache size (attention window size) on the
X-axis. Streamingl.LM delivers a remarkable speedup of up to 22.2x per token and retains a memory footprint
similar to the re-computation baseline.

TI I t from attention_sinks import AutoModel

model = AutoModel.from_pretrained("meta-1lama/Llama-2-7b-hf", device_map="auto")

« Application:
o Continuous Summaries: Provide a running summary of recent paragraphs or sections

o Continuous conversational agents: Customer Support or Virtual Assistants

« Strengths:
o Handle long/infinite sequence without fine-tuning
o Comprehensive experimental investigations on different large language models

o Easy to implement https://github.com/tomaarsen/attention_sinks

https://github.com/tomaarsen/attention_sinks

I
Thought (Cont'd)

 Weaknesses:
o Based on empirical observation

o Only autoregressive, decoder-only LMs, ex: GPT, Llama

* Future Direction:
o Integrate with context-extension methods

o Extend the work to different model architectures

w
Ym
XI5
2
S

	Slide 1: Efficient Streaming Language Models With Attention Sinks
	Slide 2: Background
	Slide 3: LLM for Infinite-length inputs
	Slide 4: Challenges
	Slide 5: Related Work
	Slide 6: Point of Perplexity Surge
	Slide 7: Attention Sinks
	Slide 8: StreamingLLM
	Slide 9: StreamingLLM
	Slide 10: Experiments
	Slide 11: How many attention sinks do we need?
	Slide 12: How many attention sinks do we need?
	Slide 13: Which is more important?
	Slide 14: Which is more important?
	Slide 15: Will attention sinks affect the model training?
	Slide 16: Will attention sinks affect the model training?
	Slide 17: Efficiency
	Slide 18: Thought
	Slide 19: Thought (Cont'd)
	Slide 20: Appendix
	Slide 21: Attention Sinks
	Slide 22: Attention Map for BERT-based model
	Slide 23: Number of Sinks in Pre-training Stage
	Slide 24: Long Texts on Language Modeling
	Slide 25: Thank You

